Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Crit Care ; 27(1): 55, 2023 02 10.
Article in English | MEDLINE | ID: covidwho-2255724

ABSTRACT

BACKGROUND: Fibrinolysisis is essential for vascular blood flow maintenance and is triggered by endothelial and platelet release of tissue plasminogen activator (t-PA). In certain critical conditions, e.g. sepsis, acute respiratory failure (ARF) and trauma, the fibrinolytic response is reduced and may lead to widespread thrombosis and multi-organ failure. The mechanisms underpinning fibrinolysis resistance include reduced t-PA expression and/or release, reduced t-PA and/or plasmin effect due to elevated inhibitor levels, increased consumption and/or clearance. This study in critically ill patients with fibrinolysis resistance aimed to evaluate the ability of t-PA and plasminogen supplementation to restore fibrinolysis with assessment using point-of-care ClotPro viscoelastic testing (VET). METHODS: In prospective, observational studies, whole-blood ClotPro VET evaluation was carried out in 105 critically ill patients. In 32 of 58 patients identified as fibrinolysis-resistant (clot lysis time > 300 s on the TPA-test: tissue factor activated coagulation with t-PA accelerated fibrinolysis), consecutive experimental whole-blood VET was carried out with repeat TPA-tests spiked with additional t-PA and/or plasminogen and the effect on lysis time determined. In an interventional study in a patient with ARF and fibrinolysis resistance, the impact of a 24 h intravenous low-dose alteplase infusion on coagulation and fibrinolysis was prospectively monitored using standard ClotPro VET. RESULTS: Distinct response groups emerged in the ex vivo experimental VET, with increased fibrinolysis observed following supplementation with (i) t-PA only or (ii) plasminogen and t-PA. A baseline TPA-test lysis time of > 1000 s was associated with the latter group. In the interventional study, a gradual reduction (25%) in serial TPA-test lysis times was observed during the 24 h low-dose alteplase infusion. CONCLUSIONS: ClotPro viscoelastic testing, the associated TPA-test and the novel experimental assays may be utilised to (i) investigate the potential mechanisms of fibrinolysis resistance, (ii) guide corrective treatment and (iii) monitor in real-time the treatment effect. Such a precision medicine and personalised treatment approach to the management of fibrinolysis resistance has the potential to increase treatment benefit, while minimising adverse events in critically ill patients. TRIAL REGISTRATION: VETtiPAT-ARF, a clinical trial evaluating ClotPro-guided t-PA (alteplase) administration in fibrinolysis-resistant patients with ARF, is ongoing (ClinicalTrials.gov NCT05540834 ; retrospectively registered September 15th 2022).


Subject(s)
Fibrinolysis , Tissue Plasminogen Activator , Humans , Tissue Plasminogen Activator/pharmacology , Tissue Plasminogen Activator/therapeutic use , Fibrin Clot Lysis Time , Point-of-Care Systems , Prospective Studies , Feasibility Studies , Critical Illness/therapy , Plasminogen/pharmacology
3.
J Clin Med ; 11(8)2022 Apr 07.
Article in English | MEDLINE | ID: covidwho-1785773

ABSTRACT

Viscoelastic testing (VET) by both TEG and ROTEM has demonstrated hypercoagulability early in corona virus disease 2019 (COVID-19) associated coagulopathy (CAC). Additional VET studies demonstrated fibrinolytic shutdown late in a majority of severely ill COVID-19 patients with an associated elevation of d-dimer. Elevated d-dimer confirms that coagulation, followed by fibrinolysis, has occurred. These findings imply that, during CAC, three enzymes-thrombin, Factor XIIIa and plasmin-must have acted in sequence. However, limitations in standard VET analyses preclude exploration of the earliest phases of clot induction, as well as clot formation and clot dissolution in flowing blood. Herein, we describe a novel method illuminating aspects of this unexplored area. In addition, we created an in vitro blood flow model in which the interactions of thrombin, Factor XIII and plasmin with fibrinogen can be studied, allowing the determination of soluble fibrin (SF), the highly unstable form of fibrin that precedes the appearance of a visible clot. This model allows the determination of the SF level at which fibrin microclots begin to form.

5.
SAGE Open Med ; 9: 20503121211002996, 2021.
Article in English | MEDLINE | ID: covidwho-1158190

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 has emerged as a new viral pandemic, causing Coronavirus disease 2019 (COVID-19) leading to a wide array of symptoms ranging from asymptomatic to severe respiratory failure. However, coagulation disorders have been found in some patients infected with SARS-CoV-2, leading to either a clotting disorder or hemorrhage. Several mechanisms attempt to explain the mechanism behind the pro-coagulant state seen with COVID-19 patients, including different receptor binding, cytokine storm, and direct viral endothelial damage. SARS-CoV-2 has also been recently found to bind to CLEC4M receptor, a receptor that participates in the clearance of von Willebrand Factor and Factor VIII. The competitive binding of SARS-CoV-2 to CLEC4M could lead to decreased clearance, and therefore a promotion of a pro-coagulative state; however, an experimental study needs to be done to prove such an association.

SELECTION OF CITATIONS
SEARCH DETAIL